Imaging layers in thin-film molecular devices by transmission electron microscopy, using milling by focused ion beams and deposition on NaCl and Si

Author:

Brunner Pierre-Louis M.1,Masse Jean-Philippe2,L’Espérance Gilles2,Wuest James D.1

Affiliation:

1. Département de chimie, Université de Montréal, Montréal, QC H3C 3J7, Canada.

2. Centre de caractérisation microscopique des matériaux (CM)2, Polytechnique Montréal, Montréal, QC H3C 3A7, Canada.

Abstract

The performance of molecule-based thin-film devices such as organic light-emitting diodes, photovoltaic cells, and thin-film transistors depends on the electronic properties of the individual molecular components, as well as on their association to form complex morphologies. Transmission electron microscopy (TEM) can be used to image the morphologies and help reveal how the devices work and can be improved. We have examined the suitability of various ways to prepare samples of thin molecular films for imaging by TEM. Specifically, we have used focused ion beams to mill cross sections of complete devices that have been glued together with epoxy adhesives. In addition, thin films of the type used as active layers in molecule-based devices can be deposited on disks of NaCl, which can then be dissolved in water to release free-standing films that can be imaged by TEM, without loss of nanostructural details. Films of this type can also be deposited on Si wafers, which can then be fractured to expose sections of film that overhang edges of fragments and can be imaged conveniently by TEM. This allows TEM to be used as a quick method for screening samples and monitoring the purification of active materials.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3