Affiliation:
1. School of Chemical Engineering and Technology, Tianshui Normal University, Tianshui 741000, China.
2. College of Chemical & Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
3. Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Lanzhou 730070, China.
Abstract
The ZnIn/HZSM-5 catalyst was prepared by the wetness impregnation method, and the structure of catalyst was characterized by XRD, SEM, TEM, H2-TPR, NH3-TPD, XPS, TG, and N2 adsorption–desorption and then investigated in the coupling of propane with CO2 to propylene. It is found that the addition of Zn species is beneficial to the dispersion of In2O3 over HZSM-5, which plays an important role in propene formation, and adjusts the acidity distribution of In/HZSM-5 catalyst, as well as significantly improves the activity of In/HZSM-5 catalyst. The selectivity of propylene is 68.21% in the coupling of propane with CO2 over ZnIn/HZSM-5 catalyst when the time on stream (TOS) is 2 h, reaction temperature is 580 °C, reaction pressure is 0.3 MPa, C3H6:CO2:N2 = 1:4:5, catalyst mass is 0.2 g, and space velocity is 6000 mL gcat−1 h−1. However, the selectivity of propylene is only 63.33% and 0.25% in the propane dehydrogenation or CO2 hydrogenation reaction, respectively. The ZnIn/HZSM-5 catalyst showed a higher stability with only 0.80% conversion drop after three cycles.
Publisher
Canadian Science Publishing
Subject
Organic Chemistry,General Chemistry,Catalysis
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献