Affiliation:
1. Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA.
Abstract
The syntheses of two square planar nickel complexes containing the condensation and subsequently reduced products obtained by reacting [Ni(en)3](BF4)2 and acetone are reported. The complexes 5,5,7,12,12,14-hexamethyl-1(S),4(S),8(R),11(R)-tetraazacyclotetradecane-nickel(II)[PF6]2 and 5,5,7,12,12,14-hexamethyl-1(S),4(R),8(S),11(R)-tetraazacyclotetradecane-nickel(II)[Cl][PF6] labelled as [Ni(II)SSRRL](PF6)2 and [Ni(II)SRSRL](Cl)(PF6), respectively, were found to have slightly different solubilities that allowed for their purification. The complexes were characterized by FTIR, 1H NMR, and UV–vis spectra. Redox potentials, determined by cyclic voltammetry, established that [Ni(II)SSRRL](PF6)2 exhibits a reversible oxidation (E1/2(ox) = 0.85 V) and reduction (E1/2(red) = −1.59 V), whereas [Ni(II)SRSRL](Cl)(PF6) displays an irreversible oxidation (Epa(ox) = 1.37 V) and reversible reduction (E1/2(red) = −1.62 V) relative to the ferrocene couple at 0.0 V. Single crystal X-ray determinations established that one of the compounds, [Ni(II)SSRRL](PF6)2, contained two [Formula: see text] anions, whereas the other compound, [Ni(II)SRSRL](Cl)(PF6), contained one Cl− and one [Formula: see text] anion. In the solid state, compound [Ni(II)SSRRL](PF6)2 was held together by H-bonds between H atoms on the Ni containing dication and F atoms in the [Formula: see text] anion. Compound [Ni(II)SRSRL](Cl)(PF6) crystallized in the form of dimers held together by interactions between H atoms attached to N atoms on adjacent cations binding to two Cl− anions in the middle with these dimers held together by further H-bonding to interstitial [Formula: see text] anions. Complex [Ni(II)SRSRL](Cl)(PF6) was found to contain anagostic interactions on the bases of NMR (downfield shift in C–H protons) and structural data (2.3 < d(H-Ni) < 2.9 Å), as well as theoretical calculations.
Publisher
Canadian Science Publishing
Subject
Organic Chemistry,General Chemistry,Catalysis