Reactions of a pincer proligand with copper iodide: bridging instead of C–H metalation

Author:

Chahrour Taghrid11,Castonguay Annie11,Oguadinma Paul O.11,Schaper Frank1,Zargarian Davit11

Affiliation:

1. Département de chimie, Université de Montréal, Montréal, QC H3C 3J7, Canada

Abstract

Various precursors of divalent copper have been treated with the meta-disubstituted phenylene-based proligand POC(H)OP (1,3-(i-Pr2PO)2C6H4) with the objective of preparing classical pincer complexes (POCOP)CuX. However, in no case was such species obtained, presumably owing to the difficult C–H metallation step. Analogous reactions of monovalent precursors were also unsuccessful, whereas reaction of POC(H)OP with CuI under different conditions gave the non-metallated adducts {(μ, κP, [Formula: see text]-POC(H)OP)Cu(μ-Ι)}2, 1, {(μ, κP, [Formula: see text]-POC(H)OP)Cu2(μ-Ι)2(DMAP)2}, 2 (DMAP = 4-dimethylaminopyridine), and {(μ, κP, [Formula: see text]-POC(H)OP)Cu23-Ι)2}2, 3. Treating 1 with DMAP gave the adduct 2, whereas 3 could be obtained by treating 1 with BuLi or by sublimation of 1. The solid state structures of these complexes revealed the tetrahedral geometry that might be anticipated for the d10 Cu(I) centers, in addition to fairly close I–H distances; on the other hand, no C–H interaction (agostic or otherwise) was observed with the Cu centers in any of these structures. The unsuccessful metallation of the C(2)–H moiety is thought to be a result of the strong preference of monovalent copper center to form bridging interactions with iodide and the POC(H)OP ligand; this appears to prevent the approach of the central carbon of the ligand to the Cu centers.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3