Lithium Aluminum Hydride Reductive Rearrangement of Allylic Acetals to Vinyl Ethers: A Synthesis of 3-Deoxy Glycals

Author:

Fraser-Reid Bert,Tam Steve Y-K.,Radatus Bruno

Abstract

Carbohydrate allylic acetals (hex-2-enopyranosides) are reductively rearranged to vinyl ethers (3-deoxy glycals) by treatment with lithium aluminium hydride in refluxing ethereal solvents. Under similar conditions, some allylic alcohols are also reductively rearranged to olefins, although the reaction appears to be confined to carbohydrate substrates since the reaction fails with typical carbocyclic allylic alcohols.The results are rationalized by postulating the intermediacy of an oxygen–alane complex, this being formed more readily in the case of an hydroxyl (or ester) rather than an ethereal oxygen. An axial oxygen permits easier achievement of the reactive transition state than an equatorial oxygen. The complex normally leads to an SN2' reductive rearrangement in which the entering hydride and departing oxygen are syn-related. Alternatively, and particularly when the double bond is flanked by an hydroxyl group at one allylic position and a leaving group at the other, an abnormal SN2′ process may occur so that the hydride ion is delivered vicinal and cis to the hydroxyl group, with ejection of the leaving group. The process is at all times stereospecific but not always regiospecific.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Lithium aluminum hydride;Fieser and Fieser's Reagents for Organic Synthesis;2017-02-20

2. Lithium aluminum hydride;Fieser and Fieser's Reagents for Organic Synthesis;2017-02-20

3. Stereoselective Synthesis of 2-(β-C-Glycosyl)glycals: Access to Unusual β-C-Glycosides from 3-Deoxyglycals;The Journal of Organic Chemistry;2016-03-14

4. Lithium aluminum hydride;Fieser and Fieser's Reagents for Organic Synthesis;2013-04-26

5. Stereoelectronic Factors in the Stereoselective Epoxidation of Glycals and 4-Deoxypentenosides;The Journal of Organic Chemistry;2011-03-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3