Effects of beech bark disease on the growth of American beech (Fagusgrandifolia)

Author:

Gavin David G.,Peart David R.

Abstract

We studied radial growth reduction in American beech (Fagusgrandifolia Ehrh.) in relation to the level of defect induced by beech bark disease, in second-growth and old-growth northern hardwoods stands in New Hampshire. In the second-growth stand at Moose Mountain (n = 243 trees), 1989–1990 radial growth declined significantly with increasing severity of external symptoms. The severity of external symptoms increased significantly with DBH. To examine temporal trends, internal defect induced by the disease was quantified as the percentage of growth sheath cankered in each year, by cross-sectioning a subsample of 40 trees. Internal defect first appeared in 1950, increased through 1969, then declined until a major pulse of infection in the period 1983–1987. Sectioned trees were divided into infection classes based on a cumulative measure of internal defect. Growth of severely infected trees first fell below that of uninfected trees in 1965, and was consistently lower after 1972. The growth ratio of severely infected to uninfected trees generally declined from 1960 to 1990; by 1990, growth of severely infected trees was reduced by more than 40% relative to healthy trees. This decline in the growth ratio corresponded well to the increase in cumulative internal defect in the stand, suggesting that disease stress had cumulative effects on tree vigor. The relation between beech bark disease and growth was also examined on an individual-tree basis; recent growth decline was significantly greater for trees with higher levels of internal defect. Internal defect was a better predictor of growth trends than was external defect. External defect was only moderately correlated with internal defect (r2 = 0.503). In the old-growth stand at Bartlett, N.H. (n = 40 trees) infection was quantified from external symptoms only. As in the second-growth stand, the growth of severely infected trees in the old-growth stand fell significantly below that of uninfected trees. However, significant differences in growth between uninfected and severely infected trees occurred earlier in the old-growth stand, first appearing in 1949. Delayed growth reductions in the second-growth stand may be associated with changes in shade and moisture affecting the beech scale, changes in tree physiological stress after selective logging, or changes in the density of large trees. Beech may survive long periods of infection by beech bark disease. However, our results demonstrate clearly that beech bark disease has reduced the growth of American beech in both second-growth and old-growth northern hardwoods stands for several decades.

Publisher

Canadian Science Publishing

Subject

Ecology,Forestry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3