Author:
Amaldi Francesco,Camacho-Vanegas Olga,Cecconi Francesco,Loreni Fabrizio,Cardinali Beatrice,Crosio Claudia,Pellizzoni Livio,Pierandrei-Amaldi Paola,Mariottini Paolo
Abstract
In Xenopus laevis, as well as in other vertebrates, ribosomal proteins (r-proteins) are coded by a class of genes that share some organizational and structural features. One of these, also common to genes coding for other proteins involved in the translation apparatus synthesis and function, is the presence within their introns of sequences coding for small nucleolar RNAs. Another feature is the presence of common structures, mainly in the regions surrounding the 5′ ends, involved in their coregulated expression. This is attained at various regulatory levels: transcriptional, posttranscriptional, and translational. Particular attention is given here to regulation at the translational level, which has been studied during Xenopus oogenesis and embryogenesis and also during nutritional changes of Xenopus cultured cells. This regulation, which responds to the cellular need for new ribosomes, operates by changing the fraction of rp-mRNA (ribosomal protein mRNA) engaged on polysomes. A typical 5′ untranslated region characterizing all vertebrate rp-mRNAs analyzed to date is responsible for this translational behaviour: it is always short and starts with an 8–12 nucleotide polypyrimidine tract. This region binds in vitro some proteins that can represent putative trans-acting factors for this translational regulation.Key words: ribosomal proteins, snoRNA, translational regulation, Xenopus laevis.
Publisher
Canadian Science Publishing
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献