Author:
Romano T A,Keogh M J,Kelly C,Feng P,Berk L,Schlundt C E,Carder D A,Finneran J J
Abstract
Anthropogenic sound is a potential stressor for marine mammals that may affect health, as has been demonstrated in other mammals. Therefore, we have initiated investigations on the effects of intense underwater sounds on nervous system activation and immune function in marine mammals. Blood samples were obtained before and after sound exposures (single underwater impulsive sounds (up to 200 kPa) produced from a seismic water gun and (or) single pure tones (up to 201 dB re 1 μPa) resembling sonar pings from a white whale, Delphinapterus leucas, and a bottlenose dolphin, Tursiops truncatus, to measure neural-immune parameters. Norepinephrine, epinephrine, and dopamine levels increased with increasing sound levels and were significantly higher after high-level sound exposures (>100 kPa) compared with low-level sound exposures (<100 kPa) or controls (P = 0.003, 0.006, and 0.020) for the white whale. Alkaline phosphatase decreased over the experimental period (P < 0.001), while γ-glutamyltransferase increased over the experimental period (P < 0.001). Significant neural-immune measurements for the dolphin after exposure to impulsive sounds included an increase in aldosterone (P = 0.003) and a decrease in monocytes (P = 0.006). Neural-immune changes to tonal sound exposures were minimal, although changes were observed in multiple neural-immune measures over time.
Publisher
Canadian Science Publishing
Subject
Aquatic Science,Ecology, Evolution, Behavior and Systematics
Cited by
109 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献