An effective and biocompatible antibiofilm coating for central venous catheter

Author:

Silva Paes Leme Annelisa Farah1,Ferreira Aline Siqueira1,Alves Fernanda Aparecida Oliveira1,de Azevedo Bruna Martinho2,de Bretas Liza Porcaro1,Farias Rogerio Estevam3,Oliveira Murilo Gomes2,Raposo Nádia Rezende Barbosa1

Affiliation:

1. Center of Research and Innovation in Health Sciences (NUPICS), School of Pharmacy, Federal University of Juiz de Fora – Juiz de Fora, Minas Gerais, Brazil.

2. Maurílio Baldi Laboratory, University Hospital, Federal University of Juiz de Fora – Juiz de Fora, Minas Gerais, Brazil.

3. Department of Morphology/Histology, Institute of Biological Sciences, Federal University of Juiz de Fora – Juiz de Fora, Minas Gerais, Brazil.

Abstract

The aim of this study was to investigate the in vitro and in vivo efficacy and the tissue reaction of an antibiofilm coating composed of xylitol, triclosan, and polyhexamethylene biguanide. The antimicrobial activity was analyzed by a turbidimetric method. Scanning electron microscopy was used to evaluate the antiadherent property of central venous catheter (CVC) fragments impregnated with an antibiofilm coating (I-CVC) in comparison with noncoated CVC (NC-CVC) fragments. Two in vivo assays using subcutaneous implantation of NC-CVC and I-CVC fragments in the dorsal area of rats were performed. The first assay comprised hematological and microbiological analysis. The second assay evaluated tissue response by examining the inflammatory reactions after 7 and 21 days. The formulation displayed antimicrobial activity against all tested strains. A biofilm disaggregation with significant reduction of microorganism’s adherence in I-CVC fragments was observed. In vivo antiadherence results demonstrated a reduction of early biofilm formation of Staphylococcus aureus ATCC 25923, mainly in an external surface of the I-CVC, in comparison with the NC-CVC. All animals displayed negative hemoculture. No significant tissue reaction was observed, indicating that the antibiofilm formulation could be considered biocompatible. The use of I-CVC could decrease the probability of development of localized or systemic infections.

Publisher

Canadian Science Publishing

Subject

Genetics,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Immunology,Microbiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3