Microcycle conidiation in Penicillium urticae: an ultrastructural investigation of conidiogenesis

Author:

Sekiguchi J.,Gaucher G. M.,Costerton J. W.

Abstract

A cultivation system has been developed for Penicillium urticae which yields 'microcycle' conidiation in submerged culture. Spherical growth of spores was initiated by incubation at 37 °C in a growth-favoring medium. Transfer of these enlarged spores to a nitrogen-poor medium at 35 °C results in synchronous germination and limited outgrowth followed by roughly synchronous conidiation. A study of the conidiation stage showed that a phialide and an immature conidium began to form at the tip of all germ tubes 18 h after the temperature shift. By 24 h additional phialides commonly appeared as a branch near the tip of the germ tube and the more mature conidia exhibited increasing refractility. The earliest ultrastructural signs of conidiation were various round invaginations in the plasma membrane and a thickening and rounding of the new spore wall which appeared as an inner extension of the phialide cell wall. Upon segregation of the conidium from the phialide cell by conidial wall formation, 'trench-like' invaginations gradually appeared in the plasma membrane and a disorganized rodlet pattern was formed on the outer surface of the maturing conidial wall. Continued maturation involved the formation of chains of conidia and phialide senescence which was characterized by a general degradation of intracellular structure. A comparison with standard surface and submerged culture conidiation indicated that 'microcycle' conidiation, while less prolific, was essentially identical.

Publisher

Canadian Science Publishing

Subject

Genetics,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3