Hydration of the carbonyl group — Acetic acid catalysis in the co-operative mechanism

Author:

Hsieh Yih-Huang,Weinberg Noham,Yang Kiyull,Kim Chan-Kyung,Shi Zheng,Wolfe Saul

Abstract

In a co-operative reaction, solvent molecules, specifically water molecules, participate actively in the mechanism to circumvent the formation of charged intermediates. This paper extends our earlier theoretical treatment of the neutral co-operative hydration of acetone to include general acid catalysis by acetic acid. As before, the predominant neutral channel employs three catalytic water molecules. The principal acetic acid catalyzed channels employ one catalytic water molecule and, in approximately equal proportions, one or both oxygens of the carboxyl group. The theoretical rate constant for general acid catalysis is calculated to be 0.49 M–1s–1at 298 K. This compares to an estimated experimental value of 0.30 M–1s–1for acetic acid catalyzed hydration of acetone at 298 K in water solvent, determined by using the18O-isotope shift in the13C NMR spectrum of 2-13C-labelled acetone as a kinetic probe. It is concluded that the notion of co-operativity can be extended to include general acid catalysis of the hydration of a carbonyl group in water solvent. This creates an obvious problem for the generally accepted view that multistep ionic mechanisms are operative in the low dielectric media that exist at the active sites of hydrolytic enzymes. The relevance of this finding to the mechanisms of action of β-lactam antibiotics has been noted.Key words: hydration, reaction mechanism, co-operativity, general acid catalysis, ab initio, SCRF,18O-isotope shift.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3