Substitution between floor constructions in wood and natural stone: comparison of energy consumption, greenhouse gas emissions, and costs over the life cycle

Author:

Petersen Ann Kristin,Solberg Birger

Abstract

This paper compares two floor constructions used at the new airport outside Oslo, one made of solid oak and one made of natural stone, to (i) make an inventory of energy consumption and greenhouse gas (GHG) emissions over the life cycle of the two constructions, (ii) calculate the differences regarding GHG emissions and cost, and (iii) determine which factors have the strongest influence on the results. Manufacturing the wood floor required 1.6 times more energy and produced one-third of the GHG emissions compared with the natural stone floor. Over the life cycle, net GHG emissions can be avoided only if the wood is used as a biofuel after the replacement or demolition of the floor. The wooden floor must be competitive on price to be a cost-efficient action against global warming. Per cubic metre of wood floor, emissions of up to 1.263 t of CO2 equivalents can be avoided by a substitution between the two floor constructions. The factors that have the most influence on the result are carbon fixation on forest land, waste handling of wood, and discount rate, the latter reflecting the relative importance over time given to a unit of GHG emissions.

Publisher

Canadian Science Publishing

Subject

Ecology,Forestry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3