Turning on and turning off the arginine deiminase system in oral streptococci

Author:

Curran Timothy M,Ma Yousheng,Rutherford Glen C,Marquis Robert E

Abstract

The arginine deiminase system in oral streptococci is highly regulated. It requires induction and is repressed by catabolites such as glucose or by aeration. A comparative study of regulation of the system in Streptococcus gordonii ATCC 10558, Streptococcus rattus FA-1, and Streptococcus sanguis NCTC 10904 showed an increase in activity of the system in S. sanguis of some 1467-fold associated with induction-derepression of cells previously uninduced-repressed. The activity of the system was assayed in terms of levels of arginine deiminase, the signature enzyme of the system, in permeabilized cells. Increases in enzyme levels associated with induction-derepression were less for the other two organisms, mainly because of less severe repression, especially for S. rattus FA-1, which was the least sensitive to catabolite repression or aeration. Regulation of the arginine deiminase system involving induction and catabolite repression was demonstrated also with monoorganism biofilms composed of cells of S. sanguis adherent to glass slides. Fully uninduced-repressed cells from suspension cultures or biofilms were compromised in their abilities to catabolize arginine to protect themselves against acid damage. However, it was found that the system can be rapidly turned on or turned off, although induction-derepression did appear to require cell growth. Still, the system could respond rapidly to the availability of arginine to reestablish high capacity for alkali production.Key words: arginine deiminase, oral streptococci, induction-derepression, acid damage, biofilms.

Publisher

Canadian Science Publishing

Subject

Genetics,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Immunology,Microbiology

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3