Simulating the response of natural ecosystems and their fire regimes to climatic variability in Alaska

Author:

Bachelet D,Lenihan J,Neilson R,Drapek R,Kittel T

Abstract

The dynamic global vegetation model MC1 was used to examine climate, fire, and ecosystems interactions in Alaska under historical (1922–1996) and future (1997–2100) climate conditions. Projections show that by the end of the 21st century, 75%–90% of the area simulated as tundra in 1922 is replaced by boreal and temperate forest. From 1922 to 1996, simulation results show a loss of about 9 g C·m–2·year–1 from fire emissions and 360 000 ha burned each year. During the same period 61% of the C gained (1.7 Pg C) is lost to fires (1 Pg C). Under future climate change scenarios, fire emissions increase to 11–12 g C·m–2·year–1 and the area burned increases to 411 000 – 481 000 ha·year–1. The carbon gain between 2025 and 2099 is projected at 0.5 Pg C under the warmer CGCM1 climate change scenario and 3.2 Pg C under HADCM2SUL. The loss to fires under CGCM1 is thus greater than the carbon gained in those 75 years, while under HADCM2SUL it represents only about 40% of the carbon gained. Despite increases in fire losses, the model simulates an increase in carbon gains during the 21st century until its last decade, when, under both climate change scenarios, Alaska becomes a net carbon source.

Publisher

Canadian Science Publishing

Subject

Ecology,Forestry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3