The role of chromatin structure in regulating stress-induced transcription inSaccharomyces cerevisiaeThis paper is one of a selection of papers published in this Special Issue, entitled 27th International West Coast Chromatin and Chromosome Conference, and has undergone the Journal's usual peer review process.

Author:

Uffenbeck Shannon R.1,Krebs Jocelyn E.1

Affiliation:

1. Department of Biological Sciences, University of AK Anchorage, 3211 Providence Drive, Anchorage, AK 99508, USA.

Abstract

All cells, whether free-living or part of a multicellular organism, must contend with a variety of environmental fluctuations that can be harmful or lethal to the cell. Cells exposed to different kinds of environmental stress rapidly alter gene transcription, resulting in the immediate downregulation of housekeeping genes, while crucial stress-responsive transcription is drastically increased. Common cis-acting elements within many stress-induced promoters, such as stress response elements and heat shock elements, allow for coordinated expression in response to many different stresses. However, specific promoter architectures, i.e., specific combinations of high- and low-affinity stress-responsive cis elements embedded in a particular chromatin environment, allow for unique expression patterns that are responsive to the individual type and degree of stress. The coordination of transcriptional stress responses and the role that chromatin structure plays in the regulation and kinetics of such responses is discussed. The interplay among global and gene-specific stress responses is illustrated using the constitutive and stress-induced transcriptional regulation of HSP82 as a model. This review also investigates evidence suggesting that stress-induced transcription is globally synchronized with the stress-induced repression of housekeeping gene via 2 distinct mechanisms of facilitating the binding of TATA-binding protein (TBP): TFIID and SAGA-mediated TBP binding.

Publisher

Canadian Science Publishing

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3