Author:
Svenson Doug,Kadla John F,Chang Hou-min,Jameel Hasan
Abstract
Contrary to previous reports, the reaction mechanism of chlorine dioxide (OClO·) with benzyl alcohols involves both radical cation and benzyl radical mechanisms dependent on pH. The primary reaction product between OClO· and 1-(3,4-dimethoxy-phenyl) ethanol at pH 8 is 3,4-dimethoxyacetophenone. At pH 4 no acetophenone was observed; the majority of the degradation products were chlorinated and aromatic ring-oxidized compounds. A primary kinetic isotope effect (kH/kD = 2.05) was observed in the reaction of OClO· with 1-(3,4-dimethoxy-phenyl)-(1-2H) ethanol at pH 8, but was absent at pH 4 (kH/kD [Formula: see text] 1). Similarly, the corresponding methyl ether (4-(1-methoxy)ethyl-1,2-dimethoxybenzene) was substantially less reactive at pH > 6. On the basis of these results, competing pH-dependent reaction mechanisms have been proposed, where at high pH OClO· reacts with benzyl alcohols via a OClO·benzyl alcohol complex.Key words: chlorine dioxide, mechanism, kinetic isotope effect, aromatic radical cation, benzyl radical.
Publisher
Canadian Science Publishing
Subject
Organic Chemistry,General Chemistry,Catalysis
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献