Properties of cell wall peptidoglycan synthesized by amino acid deprived relA mutants of Escherichia coli

Author:

Vanderwel Désirée,Ishiguro Edward E.

Abstract

Cell wall peptidoglycan synthesis in Escherichia coli is under stringent control. During amino acid deprivation, peptidoglycan synthesis is inhibited in re1A+ bacteria but not in re1A mutants. The relaxed synthesis of peptidoglycan by amino acid deprived re1A bacteria was inhibited by Several β-lactam antibiotics at concentrations which inhibited cell elongation in growing cultures suggesting that the transpeptidase activity of penicillin-binding protein (PBP-1B) was involved in this process. Structural studies on the peptidoglycan also indicated the involvement of transpeptidation in relaxed peptidoglycan synthesis. The peptidoglycan synthesized during amino acid deprivation was cross-linked to the existing cell wall peptidoglycan, and the degree of cross-linkage was the same as that of peptidoglycan synthesized by growing control cells. The relaxed synthesis of peptidoglycan was also inhibited by moenomycin, an inhibitor of the in vitro transglycosylase activities of PBPs, but the interpretation of this result depends on whether the transglycosylases are the sole targets of moenomycin in vivo. Most of the peptidoglycan lipoprotein synthesized by histidine-deprived re1A+ bacteria was in the free form as previously reported, possibly because of the restriction in peptidoglycan synthesis. In support of this proposal, most of the lipoprotein synthesized during histidine deprivation of re1A mutants was found to be covalently linked to peptidoglycan. Nevertheless, the peptidoglycan synthesized by amino acid deprived re1A bacteria was apparently deficient in bound lipoprotein as compared with peptidoglycan synthesized by normal growing control bacteria suggesting that the rate of lipoprotein synthesis during amino acid deprivation may be limiting.

Publisher

Canadian Science Publishing

Subject

Genetics,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Immunology,Microbiology

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3