Abstract
A three-dimensional (3D) method of analysis of the stability of slopes was developed based on the sliding mechanism observed in the 1988 failure of the Kettleman Hills landfill slope (Kettleman City, California) and the associated model studies. By adopting a limit equilibrium concept, the method assumes the sliding mass as a block system in which the contacts between blocks are inclined. The lines of intersection of the block contacts are assumed to be parallel, which enables the sliding kinematics. In consideration of the differential straining between blocks, the shear stresses on the slip surface and the block contacts are evaluated based on the degree of shear strength mobilization on these contacts. The overall factor of safety is calculated based on the force equilibrium of the individual blocks and the entire block system as well. Based on comparisons with a series of hypothetical 3D and 2D problems with known solutions, the method was generally found to be accurate in predicting the stability of slopes involving a translational type of sliding failure. For rotational sliding failures in clays, however, the method appears to slightly overestimate the calculated factor of safety; up to as much as 10% in a typical problem examined in this study.Key words: slope stability, 3D method, limit equilibrium, block kinematics, strain incompatibility.
Publisher
Canadian Science Publishing
Subject
Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献