Physiological aspects of CO2 and HCO3− transport by cyanobacteria: a review

Author:

Miller Anthony G.,Espie George S.,Canvin David T.

Abstract

Cyanobacteria grown at air levels of CO2, or lower, have a very high photosynthetic affinity for CO2. For ceils grown in carbon-limited chemostats at pH 9.6, the K0.5 (CO2) for whole cell CO2 fixation is about 3 nM. This is in spite of a K0.5 (CO2) for cyanobacterial ribulose bisphosphate carboxylase/oxygenase of about 200 μM. It is now clear that cyanobacteria can photosynthesize at very low CO2 concentrations because they raise the CO2 concentration dramatically around the carboxylase. This rise in the intracellular CO2 concentration involves the active transport of HCO3 and CO2, perhaps by separate transport systems. The transport of HCO3 often requires millimolar levels of Na+, and this provides a ready means of initiating HCO3 transport. The active transport of CO2 requires only micromolar levels of Na+. In the rather dense cell suspensions used in transport studies the extent of CO2 uptake is often limited by the rate at which CO2 can be formed from the HCO3 in the medium. The addition of carbonic anhydrase relieves this kinetic limitation on CO2 transport. The active transport of CO2 can be selectively inhibited by the structural analog carbon oxysulfide (COS). When HCO3 transport is allowed in the presence of COS there is a substantial net leakage of CO2 from the cells. This leaked CO2 results from the intracellular dehydration of the accumulated HCO3. This CO2 is normally scavenged by the active CO2 pump. If cells are allowed to transport H13C18O18O18O for 5 s and if CO2 transport is suddenly quenched by the addition of COS, then a rapid leakage of 13C16O16O occurs. If the rapidly released CO2 was actually present in the cells before the addition of the COS, then the intracellular CO2 concentration would have been about 0.6 mM. Not only is this a high concentration, but since the leaked CO2 was completely depleted of the initial 18O, it must have been in rapid equilibrium with the total dissolved inorganic carbon within the cells. Cells grown on high levels of inorganic carbon, either as CO2 or HCO3, lack the active HCO3 system but still retain a capacity, albeit reduced, for CO2 transport. Cyanobacteria seem to adjust their complement of inorganic carbon transport systems so that the K0.5 for transport is close to the inorganic carbon concentration of the growth medium.

Publisher

Canadian Science Publishing

Subject

Plant Science

Cited by 152 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3