Author:
George Rajan,Lewis Ruthven N.A.H.,McElhaney Ronald N.
Abstract
The purified Na+, Mg2+-ATPase from the Acholeplasma laidlawii B plasma membrane was reconstituted with dimyristoyl phosphatidylcholine and the lipid thermotropic phase behavior of the proteoliposomes formed was investigated by differential scanning calorimetry. The effect of this ATPase on the host lipid phase transition is markedly dependent on the amount of protein incorporated. At low protein/lipid ratios, the presence of increasing quantities of ATPase in the proteoliposomes increases the temperature and enthalpy while decreasing the cooperativity of the dimyristoyl phosphatidylcholine gel to liquid–crystalline phase transition. At higher protein/lipid ratios, the incorporation of increasing amounts of this enzyme does not further alter the temperature and cooperativity of the phospholipid chain-melting transition, but progressively and markedly decreases the transition enthalpy. Plots of lipid phase transition enthalpy versus protein concentration suggest that at the higher protein/lipid ratios each ATPase molecule removes approximately 1000 dimyristoyl phosphatidylcholine molecules from participation in the cooperative gel to liquid–crystalline phase transition of the bulk lipid phase. These results indicate that this integral transmembrane protein interacts in a complex, concentration-dependent manner with its host phospholipid and that such interactions involve both hydrophobic interactions with the lipid bilayer core and electrostatic interactions with the lipid polar head groups at the bilayer surface.Key words: Acholeplasma laidlawii B, Na+,Mg2+-ATPase, differential scanning calorimetry, lipid-protein interactions.
Publisher
Canadian Science Publishing
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献