Genetics of mine invasions by Deschampsia cespitosa (Poaceae)

Author:

Bush Elizabeth J.,Barrett Spencer C. H.

Abstract

Deschampsia cespitosa is a self-incompatible, tussock-forming, perennial grass with a scattered distribution in Ontario, primarily along the shores of the Great Lakes. In recent decades, D. cespitosa has colonized metal-contaminated sites in the mining regions of Sudbury and Cobalt. Isozyme variation in populations from contaminated and uncontaminated sites were compared to investigate the genetic consequences of mine invasion. Central Ontario populations are diploid (2n = 26); however, the complexity of electrophoretic patterns suggested that D. cespitosa is a diploidized tetraploid with considerable gene duplication. Innovative approaches were therefore required for quantitative assessment of isozyme variability within and among populations. Eighteen populations of D. cespitosa were assayed for variation at nine enzyme systems, representing 19 putative isozyme loci. Populations included eight from various uncontaminated habitats, five from mine sites around Sudbury, and five from Cobalt. Lower levels of diversity were evident in both Sudbury and Cobalt populations relative to uncontaminated populations. The results corroborated the prediction that colonization of contaminated habitats reduces levels of genetic variability, particularly where populations are recently established. Strong selection on mine sites will also compound stochastic loss of genetic diversity associated with colonization. The distribution of isozyme variation among populations of D. cespitosa was also used to infer colonization history. Cobalt and Sudbury populations were clearly differentiated by unique alleles at a number of enzyme systems, providing evidence for the independent origin of metal-tolerant populations in the two mining regions. Estimates of outcrossing frequency revealed no significant difference between a mine and an uncontaminated population; both populations exhibited high levels of outcrossing. Key words: colonization, mine invasion, genetic variation, Deschampsia cespitosa.

Publisher

Canadian Science Publishing

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3