HINDERED CONFORMATIONAL ISOMERIZATION OF 9,10-DIHYDRO-9,9-DIMETHYL-10-METHYLENEANTHRACENES

Author:

Curtin D. Y.,Carlson C. G.,McCarty C. G.

Abstract

While the n.m.r. spectrum of 10,10-dimethyl-9-methylene-9,10-dihydroanthracene (I) shows the geminal methyl group absorption as a sharp singlet the spectrum of the dibromo derivative, 10,10-dimethyl-9-dibromomethylene-9,10-dihydroanthracene (II) shows the methyl absorptions as two sharp well-separated peaks at room temperature which coalesce at 91°. 10,10-Dimethyl-9-phenylbromomethylene-9,10-dihydroanthracene (III), and the methyl ester (V) of IV show a broad geminal methyl spectrum at room temperature which separates to a doublet at lower temperatures and sharpens to a singlet at higher temperatures. Rate constants for the first-order processes responsible for the change in spectrum of II, III, and V have been calculated at the coalescence temperatures to be 57 (364 °K), 35 (305 °K), and 61 (300 °K) sec−1, respectively. The ΔH's were used to extrapolate the rates to 305° to give values of 1, 40, and 100 sec−1, respectively. The process being studied is inferred to be the equilibrium between two boat conformations of the center ring in the dihydroanthracene system, rapid interconversion leading to identical environments for the two methyl groups. A comparison with the geometrically similar o,o′-disubstituted biphenyl racemization gives support for this explanation. A number of compounds with a proton and one substituent on the methylene carbon atom of I (substituents: bromine, chlorine, phenyl, carboxy, carbomethoxy, phenylmercapto) and also 10,10-dimethyl-9-phenylcarbomethoxymethylene-9,10-dihydroanthracene (XII) showed a single methyl absorption at room temperature. The methyl spectrum of the mono bromo compound VI did not broaden at temperatures down to 246 °K.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3