Mössbauer and magnetization studies of mechanically milled nanocrystalline Fe1–xAlx alloys

Author:

Rajan S.1,Shukla R.1,Kumar A.2,Vyas A.2,Khan S.2,Brajpuriya R.2

Affiliation:

1. Department of Physics, Deenbandhu Chhotu Ram University of Science & Technology, Murthal, Sonipat, Haryana, India.

2. Department of Physics, Amity University, Haryana, Manesar, Gurgaon, India.

Abstract

Changes in the magnetic behavior of Fe1–xAlx (x = 0.3, 0.4, 0.5, 0.6) powders during mechanical alloying have been studied. The ball milling process leads to formation of solid state reaction assisted by severe plastic deformation because of which crystallite size is reduced and as a result of which interesting magnetic properties are developed. The evolution of magnetic order in high-energy ball-milled Fe–Al solid solution is investigated using 57Fe Mössbauer spectroscopy and vibrating sample magnetometer. Mössbauer spectra and the hyperfine field distributions of all the samples show the presence of both magnetic and paramagnetic components in the samples. The corresponding bulk magnetization studies also show that the Al rich samples are also ferromagnetic, which can be attributed to the presence of disordered Fe-rich phases due to the non-equilibrium process of alloying. In Fe-rich samples, the formation of an off stoichiometric Fe3Al phase is favored while in the case of Al-rich samples both Al-rich phases and clustering of Fe and Al atoms are present. The systematic variation in the magnetic properties has been qualitatively correlated with the evolution of microstructure, reduction in grain size (obtained using transmission electron microscopy) and enhanced intergranular exchange coupling.

Publisher

Canadian Science Publishing

Subject

General Physics and Astronomy

Reference41 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3