Effect of nonextensive electrons on dust–ion acoustic wave self-modulation

Author:

Panahi N.1,Alinejad H.2,Mahdavi M.2

Affiliation:

1. Department of Physics, Bandar Abbas Branch, Islamic Azad University, Bandar Abbas 79159-1311, Iran.

2. Department of Physics, Faculty of Basic Science, Babol University of Technology, Babol 47148-71167, Iran.

Abstract

Nonlinear self-modulation of dust–ion acoustic (DIA) waves is studied in an unmagnetized dusty plasma comprising warm adiabatic ions, arbitrarily charged dust particles, and hot nonextensive q-distributed electrons. By employing the multiple space and time scales perturbation, a nonlinear Schrödinger equation is derived for the evolution of the wave amplitude. The existence along with the stability of wave packets are discussed in the parameter space of two oppositely charged dust and ion temperature over different ranges of the nonextensive parameter q. The growth rate of the modulation instability is also given for different values of the q parameter. It is found that the critical wave number at which the instability sets in increases as the nonextensive parameter q increases. This leads to a wider range (in spatial extension) of the stable envelope solitons. It is also found that the effects of ion temperature and negative (positive) dust concentration significantly modify the criteria for the modulation instability of DIA waves. Our finding should elucidate the nonlinear electrostatic structures that propagate in astrophysical and cosmological plasma scenarios where nonextensive particles exist: such as instellar plasma, stellar polytropes, cosmic radiation, and systems with long-rang interaction.

Publisher

Canadian Science Publishing

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3