Reduction of ice adhesion to metal by using self-assembling monolayers (SAMs)

Author:

Petrenko V F,Peng S

Abstract

A new method has been developed to study the role of hydrogen bonding in ice adhesion and to minimize the effect of this mechanism on ice adhesion. Metals were coated with a mono-molecular layer that had either strong hydrophobic properties or strong hydrophilic properties. Self-assembling monolayers (SAMs) of varying degrees of hydrophobicity/hydrophilicity were created by mixing the hydrophobic and hydrophilic components. The SAM structure and quality were examined using atomic force microscopy, and the degree of the SAM hydrophobicity/hydrophilicity was characterized by the contact angle of water on the monolayer surfaces. Then, water was frozen on the top of the SAM and the shear strength of the interface between ice and SAM was measured. A good correlation between the contact angle of water and the ice adhesion strength was shown and the fraction of ice adhesion caused by hydrogen bonding was determined. It is revealed that hydrogen bonding significantly enhances ice adhesion. PACS No.: 61

Publisher

Canadian Science Publishing

Subject

General Physics and Astronomy

Cited by 127 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3