Activities of enzymes in platelet activating factor biosynthetic pathways in the gerbil model of cerebral ischemia

Author:

Siegel Andre,Baker R. Roy

Abstract

The activities of enzymes in platelet activating factor (PAF) biosynthetic pathways were analyzed in hippocampal and cerebral cortical regions of normal and ischemic gerbil brain to assess changes in enzyme activities and potential modulators that could explain the accentuated production of PAF seen in ischemia. Global forebrain ischemia was produced by bilateral carotid artery ligation, and the effectiveness of the ligation was shown by free fatty acid release and ATP depletion. Specific activities of 1-alkyl-2-acetyl-sn-glycerol (AAG) choline phosphotransferase, 1-alkyl-sn-glycero-3-phosphate (AGP) acetyl transferase, and 1-alkyl-sn-glycero-3-phosphocholine (lyso PAF) acetyl transferase in tissue homogenates were in the ratio 4:1:0.1, respectively. Sham-operated and ischemic or ischemic–reperfused tissues showed similar activities for individual enzymes, indicating that enzyme levels or activation states did not change in ischemic or reperfused tissues. However, small metabolites (relevant to ischemia) added to the in vitro assays did modify enzyme activities. Physiological concentrations of MgATP severely inhibited AGP acetyl transferase activity, and this resulted in the ratio of AGP acyl transferase to AGP acetyl transferase activities changing from 48:1 in the presence of 2.5 mM MgATP to 6:1 in the absence of MgATP. This suggests that falling ATP levels in cerebral ischemia may promote the de novo pathway of PAF biosynthesis by releasing inhibition of AGP acetyl transferase. Lyso PAF acetyl transferase was much less active than AGP acetyl transferase and was also inhibited by MgATP. AAG choline phosphotransferase was not inhibited by MgATP but was inhibited by calcium. However the superior specific activity of the choline phosphotransferase in comparison with the AGP acetyl transferase suggested that the lowered choline phosphotransferase activity in the presence of rising intracellular calcium would not seriously compromise the synthesis of PAF by the de novo route. Both acetyl transferase enzymes were also inhibited by oleoyl CoA.Key words: gerbil, cerebral ischemia, platelet activating factor, enzymes.

Publisher

Canadian Science Publishing

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3