Author:
Tang Hong-Min,Ou Wen-Bin,Zhou Hai-Meng
Abstract
The lactic acid induced unfolding and the salt-induced folding of creatine kinase (CK) were studied by enzyme activity, fluorescence emission spectra, circular dichroism spectra, and native polyacrylamide gel electrophoresis. The results showed that the kinetics of CK inactivation was a monophase process. Lactic acid caused inactivation and unfolding of CK with no aggregation during CK denaturation. The unfolding of the whole molecule and the inactivation of CK in solutions of different concentration of lactic acid were compared. Much lower lactic acid concentration values were required to bring about inactivation than were required to produce significant conformational changes of the enzyme molecule. At higher concentrations of lactic acid (more than 0.2 mM) the CK dimers were partially dissociated, as proved by native polyacrylamide gel electrophoresis. NaCl induced the molten globule state with a compact structure after CK was denatured with 0.8 mM lactic acid, and the increasing of anions led to a tight side-chain. The above results suggest that the effect of lactic acid differed from that of other denaturants such as guanidine hydrochloride, HCl, or urea during CK folding, and the molten globule state indicates that intermediates exist during CK folding.Key words: lactic acid, creatine kinase, salt-induced, unfolding, molten globule state.
Publisher
Canadian Science Publishing
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献