Effectiveness of sealers in counteracting alkali-silica reaction in plain and air-entrained laboratory concretes exposed to wetting and drying, freezing and thawing, and salt water

Author:

Bérubé Marc-André,Chouinard Dominique,Pigeon Michel,Frenette Jean,Boisvert Luc,Rivest Michel

Abstract

Low- and high-alkali, plain and air-entrained large concrete cylinders, 255 mm in diameter by 310 mm in length, were made with a highly alkali–silica reactive limestone. After curing, a number of cylinders were sealed with silane, oligosiloxane, polysiloxane, linseed oil, or epoxy, with others subjected to 179 freezing and thawing cycles in humid air (one cycle per day). All cylinders were then subjected to 14-day exposure cycles, including in the most severe case periods of humid storage in air, drying, wetting in salt water, and freezing and thawing cycles. All low-alkali specimens did not either expand or develop surface cracking, even those with a deficient air void system and exposed to freezing and thawing cycles. All unsealed high-alkali cylinders subjected early to a series of freezing and thawing cycles did not significantly expand during these cycles, but presented high expansion afterwards. Wetting and drying significantly reduced alkali–silica reaction (ASR) expansion compared with constant humid storage; however, it promoted map-cracking. Regardless of the air content, freezing and thawing increased greatly the concrete expansion in the presence of ASR, even after ASR was almost complete; freezing and thawing also greatly promoted surface cracking. On the other hand, all cylinders early sealed with silane, oligosilixane, or polysiloxane did not either significantly expand or show map-cracking, whatever the exposure conditions and the air content; these cylinders progressively lost mass with time. On the other hand, the epoxy resin was not effective. The linseed oil prevented map-cracking while significantly reducing expansion, however not sufficiently. After one or 1.5 years, some expanding cylinders were sealed with silane, oligosiloxane, or polysiloxane; they started to loose mass and contracted immediately after being sealed, whatever the exposure conditions. The results obtained thus indicate that a good sealer may greatly improve the aesthetic appearance (e.g., map-cracking) and stop expansion of ASR-affected concrete elements of 255 mm or less in thickness, made with a water-to-cement ratio in the range of 0.50, and exposed to wetting and drying, freezing and thawing, and salt water.Key words: air entrained, alkali–silica reaction, concrete, cracking, expansion, freezing and thawing, sealer, silane, siloxane, wetting and drying.

Publisher

Canadian Science Publishing

Subject

General Environmental Science,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3