Author:
Gélinas Sylvie,Chapados Camille,Beauregard Marc,Gosselin Isabelle,Martinoli Maria-Grazia
Abstract
Neurofilament proteins are highly phosphorylated molecules in the axonal compartment of the adult nervous system. We report the structural analysis of neurofilament proteins after oxidative damage. SDS-PAGE, immunoblotting, circular dichroism, and Fourier transform infrared spectroscopy were used to investigate the relative sensitivity of neurofilaments to oxidative stress and to identify changes in their molecular organization. An ascorbate-Fe+3-O2 buffer system as well as catechols were used to generate free radicals on a substrate of phosphorylated and dephosphorylated neurofilaments. By Fourier Transform Infrared spectroscopy and circular dichroism, we established that the neurofilament secondary structure is mainly composed of α-helices and that after free radical damage of the peptide backbone of neurofilaments, those helices are partly modified into β-sheet and random coil structures. These characteristic reorganizations of the neurofilament structure after oxidative exposure suggest that free radical activity might play an important role in the biogenesis of the cytoplasmic inclusions found in several neurodegenerative diseases.Key words: neurofilaments, oxidative stress, neurodegeneration, phosphorylation, infrared spectroscopy, circular dichroism.
Publisher
Canadian Science Publishing
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献