Arterial bifurcation flows – effects of flow rate and area ratio

Author:

Feuerstein I. A.,Masry O. A. El,Round G.

Abstract

Velocity profiles and surface shear rates, for three model symmetrical bifurcations made of glass from dimensions based on the arterial system, were investigated. The models studied had area ratios of 0.75, 1.02, and 1.29, with a common included angle of 75°. Area ratio and parent tube flow rate were the two independent variables evaluated. Measurements were made with a tracer particle technique using cinephotography. Velocity profiles had their highest values on the inside, and lowest values on the outside, of the branch. Flow symmetry existed in the plane perpendicular to the plane of the bifurcation. Surface shear rates remained well above the daughter-tube developed values, between two and six diameters downstream from the carina. Shear rates below the daughter-tube developed value were found on the outside wall between the carina and two daughter-tube diameters downstream. Vortex-like flow was absent in this region for the 0.75 area ratio branch and was found above 900 Reynolds number in the 1.29 area ratio branch. The disturbed flow described by others in this region may not contain vortex-like streamlines for the physiologically important 0.75 area ratio.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Increasing the Flow Output by Y-Shaped Microvascular Anastomosis;Journal of Reconstructive Microsurgery;2002

2. Hemodynamics;Pan Vascular Medicine;2002

3. An in vivo model for studying the local haemodynamics of end-to-side anastomoses;European Journal of Vascular and Endovascular Surgery;1995-02

4. The Design of Fluid Transport Systems: A Comparative Perspective;Flow-Dependent Regulation of Vascular Function;1995

5. Arteriosclerosis Research Using Vascular Flow Models: From 2-D Branches to Compliant Replicas;Journal of Biomechanical Engineering;1993-11-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3