Solvent isotope effects as a probe of general catalysis and solvation in phosphoryl transfer

Author:

Bryan Clinton D.,Schowen K. Barbara,Schowen Richard L.

Abstract

Phosphoryl transfer to methanol from tris(p-nitrophenyl) phosphate (PNNN), methyl bis(p-nitrophenyl) phosphate (PMNN), and dimethyl p-nitrophenyl phosphate (PMMN) exhibits general base catalysis by acetate ion but no detectable catalysis by acetic acid. For PNNN, acetate catalysis produces normal solvent isotope effects kROH/kROD of 1.68 ± 0.01 at high ionic strength (0.475) and 1.77 ± 0.04 at low ionic strength (0.048). A linear proton inventory indicates most simply that the isotope effect arises from a one-proton catalytic bridge in the transition state, although this model cannot strongly be distinguished from a generalized solvation effect. Reactions of methoxide ions produce slight inverse isotope effects kROD/kROH of 1.1–1.2, far smaller than the inverseeffect of about 2.5 expected for complete and uncompensated desolvation of the reactant-state methoxide ion. The transition state is thus stabilized by substantial interaction with the solvent. The proton inventory for the least reactive substrate PMMN (relative rate constant 1) is suggestive of transition-state stabilization by a combination of one-proton catalytic bridge(s) and distributed sites, while the proton inventory for the most reactive substrate PNNN (relative rate constant 1388) suggests only generalized transition-state solvation (many distributed sites); the proton inventory for PMNN, a substrate of intermediate reactivity (relative rate constant 60), suggests an intermediate situation. The data are consistent with a model in which transition states with exterior concentrations of charge favor stabilization of the charge by isotope-fractionating one-proton bridges, while transition states with distributed charge favor stabilization of the charge by many distributed sites. Key words: phosphoryl transfer, proton inventories, solvent isotope effects.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3