Organic sulfur in throughfall, stem flow, and soil solutions from temperate forests

Author:

Homann Peter S.,Mitchell Myron J.,Miegroet Helga Van,Cole Dale W.

Abstract

In the assessment of S cycling in forest ecosystems, solutions passing through the forests are normally analyzed for inorganic SO4; other forms of S are rarely considered. In this study, organic S (estimated as the difference between total S and SO4-S) was measured in canopy and soil solutions from eight forest stands spanning a broad range of overstory and soil types. Organic-S concentrations varied among the different types of solutions and among the forests, with values ranging from 0 to 50 μmol S•L−1. Organic S was ≤10% of total S in precipitation, 5 to 54% in throughfall, 1 to 50% in stem flow, 16 to 46% in O-horizon solution, 11 to 21% in A- or E-horizon solutions, and 0 to 29% in B-horizon solutions. Organic S was positively correlated with organic C and organic N in Douglas-fir (Pseudotsugamenziesii (Mirb.) Franco) and red alder (Alnusrubra Bong.) soil solutions and in Douglas-fir stem flow (r2 = 0.68 to 0.96, p < 0.001 ). Inclusion of solution organic S in nutrient cycling budgets can alter estimates of S transfers within forests and S transport out of some forest ecosystems.

Publisher

Canadian Science Publishing

Subject

Ecology,Forestry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3