Sodium hexametaphosphate (SHMP)-amended calcium bentonite for slurry trench cutoff walls: workability and microstructure characteristics

Author:

Yang Yu-Ling12,Reddy Krishna R.2,Du Yan-Jun1,Fan Ri-Dong1

Affiliation:

1. Institute of Geotechnical Engineering, Jiangsu Key Laboratory of Urban Underground Engineering & Environmental Safety, Southeast University, Nanjing 210096, China.

2. Department of Civil & Materials Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA.

Abstract

This study aims to investigate workability and microstructural characteristics of sodium hexametaphosphate (SHMP)-treated calcium bentonite (Ca-bentonite) as a potential material for soil–bentonite slurry trench cutoff walls. First, a series of Marsh viscosity, filtrate loss, density, and pH experiments are performed on bentonite – tap water slurries containing Ca-bentonite amended with 0%–8% SHMP dosages. Subsequently, scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy, and zeta potential tests are conducted to explore microstructural characteristics that control the mechanisms of SHMP treatment. The results indicate that the workability of the slurry is significantly improved with SHMP addition. The SEM, XRD, and zeta potential analyses show that SHMP-amended Ca-bentonite possesses a more dispersed structure and higher negative zeta potential relative to the unamended Ca-bentonite. The mechanisms of SHMP amendment are identified to be exchange of bivalent calcium cations in Ca-bentonite by monovalent sodium cations in the SHMP, sorption of the SHMP anions that give the clay system a steric stabilization and increased negative surface charge density, and sequestration of the bivalent calcium cations on the Ca-bentonite. Overall, the SHMP treatment is effective in making the Ca-bentonite slurry amenable for use in the soil–bentonite slurry trench wall construction.

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3