Influence of polyacrylamide conformation on fabric of “tunable” kaolin–polymer composite

Author:

Halder Bijoy K.1,Palomino Angelica M.2,Hicks Jordan1

Affiliation:

1. Department of Civil Engineering, The University of Tennessee at Knoxville, TN 37996, USA.

2. Department of Civil and Environmental Engineering, The University of Tennessee, 423 John D. Tickle Building, Knoxville, TN 37996, USA.

Abstract

“Tunable” clay–polymer composites have the potential to improve the engineering properties of clay materials. The importance of these materials derives from the ability of the responsive polymer to adopt various conformations (coiled, partially extended or extended), which in turn impacts the mesoscale properties of the material. However, the influence of polymer molecule conformation on particle arrangement and overall composite behavior is not well understood. The purpose of this study is to understand the fabric development due to the conformational behavior of the polymer, and thus the clay–polymer composite, over a wide range of solids content and stress levels. The polymer molecule conformation was controlled using selected fluid pH and ionic concentrations. Results show that the polymer conformation significantly influences clay fabric formation. When the polymer molecules are likely to have extended conformation, the dominant fabric mode is face-to-face and particle mobilization increases. Both face-to-face and edge-to-edge fabric formation dominate the behavior of the composite when coiled conformation is likely, resulting in a decrease in interparticle movement. Thus, the polymer conformation can be used to manipulate both the interparticle spacing between particles and (or) aggregates and arrangement of particles.

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3