Modelling effects of recent suction history on small-strain stiffness of unsaturated soil

Author:

Kaewsong R.1,Zhou C.1,Ng C.W.W.1

Affiliation:

1. Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.

Abstract

Recent suction history has been found to affect shear modulus of unsaturated soil at small strains (i.e., from 0.001% to 1%). In this study, a bubble model for unsaturated soil is developed within the framework of kinematic hardening and bounding surface plasticity. An elliptical elastic bubble is defined inside a modified Cam-clay bounding surface. Being a key feature of the proposed model, the size of the elastic bubble is modelled as a function of suction, degree of saturation, and plastic volumetric strain. Translation of the elastic bubble is governed by suction, degree of saturation, and stress increments. Moreover, hardening modulus depends on not only stress and void ratio, but also suction, degree of saturation, and relative position of the elastic bubble and the bounding surface. The proposed model is evaluated using suction-controlled constant-p shear tests on completely decomposed tuff (silt). It is evident that the new model is capable of capturing well the effects of recent suction history on nonlinear stress–strain relation and shear modulus degradation at small strains.

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3