Nonlinear subgrade reaction solution for circular tunnel lining design based on mobilized strength of undrained clay

Author:

Zhang Dong-ming1,Phoon Kok-Kwang2,Hu Qun-fang3,Huang Hong-wei1

Affiliation:

1. Key Laboratory of Geotechnical and Underground Engineering of Minister of Education, and Department of Geotechnical Engineering, Tongji University, Shanghai, China.

2. Department of Civil and Environmental Engineering, National University of Singapore, Blk E1A, # 07-03, 1 Engineering Drive 2, Singapore 117576.

3. Shanghai Institute of Disaster Prevention and Relief, Shanghai, China.

Abstract

This paper presents a nonlinear solution of a radial subgrade reaction–displacement (pk–ur) curve for circular tunnel lining design in undrained clay. With the concept of soil shear strength nonlinearly mobilized with shear strain, an analytical solution of pk is obtained using the mobilized strength design method. Two typical deformation modes are considered, namely oval and uniform. A total of 197 orthogonally designed cases are used to calibrate the proposed nonlinear solution of pk using the finite element method with the hardening soil model. The calibration results are summarized using a correction factor, η, which is defined as the ratio of pk_FEM to pk_MSD. It is shown that η is correlated to some input parameters. If this correlation is removed by a regression equation, f, the modified solution f(pk_MSD) agrees very well with pk_FEM. Although in reality the mobilized soil strength varies with principal stress direction, it is found that a simple average of plane strain compression and extension results is sufficient to produce the above agreement. The proposed nonlinear pk–ur curve is applied to an actual tunnel lining design example. The predicted tunnel deformations agree very well with the measured data. In contrast, a linear pk model would produce an underestimation of tunnel convergence and internal forces by 2–4 times due to the overestimation of pk at a large strain level.

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

Reference51 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3