Investigating performance of micropiled raft in foundation of power transmission line towers in cohesive soil: experimental and numerical study

Author:

Zekavati Ali-Asghar1,Khodaverdian Alireza1,Jafari Mohammad-Ali1,Hosseini Ahmad2

Affiliation:

1. Structural Department of Transmission and Distribution Research Center, Niroo Research Institute (NRI), Dadman Blvd., Shahrak Ghods (Gharb), Tehran, I.R. of Iran.

2. School of Railway Engineering, Iran University of Science and Technology, Tehran, I.R. of Iran.

Abstract

This paper captures the behavior of micropiled rafts in power transmission line tower foundations in cohesive soil, concentrating on their uplift performance whether due to the tower position along the line or under wind loading conditions. In this regard, first a number of micropiles were driven into the ground of a project site at the ParehSar power plant, Gilan, Iran. Compression and uplift loading tests were conducted according to relevant standards. On the basis of the field data, a three-dimensional finite element model was developed and subsequently calibrated and verified. The behavior of micropiled rafts subjected to uplift, which is a typical type of loading in foundations of 230 kV four-circuit lattice towers, was then studied by means of this model in terms of a wide-ranging parametric study. In the sensitivity analyses, the impacts of various parameters, such as micropile spacing-to-diameter (s/d) and length-to-diameter (l/d) ratios along with undrained shear strength of the soil, on the uplift capacity of an individual micropile within and out of the group were investigated. Furthermore, interaction factors were computed based on diverse values for undrained shear strength of the soil, s/d ratio, l/d ratio, and grout–soil adhesion. From design and analysis perspectives, the finite element method (FEM) outputs revealed that the efficiency coefficient of micropiled rafts during uplift can be considered equal to one. Moreover, it was found that not only does the behavior of micropiles affect the neighboring micropiles immediately adjacent to the loaded one, but it also influences those in further rows, the result of which would be considering their significance as well.

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fatigue life prediction of power transmission towers based on nonlinear finite element analysis;Applied Mathematics and Nonlinear Sciences;2023-10-15

2. Field Study on the Uplift Bearing Characteristics of Grouted Micropiles in Soft Soil;Soil Mechanics and Foundation Engineering;2022-11

3. Study on Anti-Uplift Effect of Micro-Steel-Pipe Pile on Red-Bedded Soft Rock Subgrade;Sustainability;2022-09-21

4. Performance of Driven Grouted Micropiles: Full-Scale Field Study;International Journal of Geomechanics;2021-02

5. Numerical simulation load test on hollow-bar micropiles by considering grouting method;Proceedings of the Institution of Civil Engineers - Geotechnical Engineering;2020-05-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3