Comparison of static lateral behavior of three pile group configurations using three-dimensional finite element modeling

Author:

Abu-Farsakh Murad1,Souri Ahmad2,Voyiadjis George2,Rosti Firouz2

Affiliation:

1. Louisiana Transportation Research Center, Louisiana State University, 4101 Gourrier Ave., Baton Rouge, LA 70808, USA.

2. Department of Civil and Environmental Engineering, Louisiana State University, Baton Rouge, LA 70803, USA.

Abstract

The lateral resistance of three pile group configurations was investigated using three dimensional (3-D) finite element modeling. The three pile groups considered in the study were a vertical pile group, a battered pile group, and a mix of vertical and battered piles in a group. The study was motivated by the full-scale static load test that was conducted on the M19 pier foundation in the I-10 twin span bridge in Louisiana. The static lateral resistance of the M19 battered pile group was investigated previously using a 3-D finite element simulation and verified with the aid of experimental results. In the present study, the M19 battered pile group model was used as the basis for the vertical and mixed pile groups for developing their 3-D finite element models. The nonlinear material behavior was accounted for using elastoplastic constitutive models such as the concrete damaged plasticity model and the anisotropic modified Cam clay model. The lateral resistance of the pile groups was investigated in terms of load–displacement, axial load, bending moment, pile damage, soil resistance, and p-multipliers. The results show that the battered pile group had the largest lateral resistance, followed by the mixed and vertical pile groups, respectively. The largest lateral load share was carried by the two middle rows in the battered pile group, while it was in the leading row in the vertical and mixed pile groups. The soil resistance profiles show that the vertical pile group mobilized greater soil resistance than the battered and mixed pile groups at the same lateral load. The back-calculated p-multipliers are the highest in the battered pile group case, followed by the mixed and vertical pile groups, respectively.

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

Reference48 articles.

1. AASHTO. 2012. AASHTO LRFD bridge design specifications. American Association of State Highway and Transportation Officials (AASHTO), Washington, D.C.

2. Field Testing and Analyses of a Batter Pile Group Foundation under Lateral Loading

3. Evaluating pile installation and subsequent thixotropic and consolidation effects on setup by numerical simulation for full-scale pile load tests

4. ACI. 2011. Building code for structural concrete and commentary. ACI 318-11. American Concrete Institute (ACI), Farmington Hills, Mich.

5. Lateral Behavior of Pile Groups in Layered Soils

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3