Use of a three-dimensional scanner for shrinkage curve tests

Author:

Wong Jonathan M.1,Elwood David1,Fredlund Delwyn G.2

Affiliation:

1. Department of Civil, Geological and Environmental Engineering, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada.

2. Golder Associates, 1721 - 8th St. E., Saskatoon, SK S7H 0T4, Canada.

Abstract

A procedure is proposed for conducting shrinkage limit tests using a three-dimensional (3D) scanner. Shrinkage limit tests were conducted on 27 different soils of varying plasticity. In this study only eight of the shrinkage curves were determined using 3D scanning techniques, while the remaining 19 were taken from literature. An individual specimen was scanned between 30 and 50 times to produce a high-resolution shrinkage curve. Shrinkage curves for each material were obtained by curve fitting a shrinkage model to the measured dataset. The primary intent of the research was to relate the shrinkage curve equation to the plasticity of a given soil. Using linear regression analysis, an empirical correlation was developed to reasonably relate parameter csh from the shrinkage model to the ratio of the plastic and liquid limits. The shrinkage curves produced based on the model have an average difference of ∼1.2% in terms of measured void ratio and predicted void ratio. The method was demonstrated to be robust for materials of low, medium, and high plasticity. The proposed methodology also presents a means of estimating a shrinkage curve in its entirety based solely on the volume of an air-dried sample, the specific gravity, and Atterberg limits of the specimen. This effectively reduces the amount of work needed to derive the shrinkage curve and could potentially reduce the time for a shrinkage limit test by half or more.

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3