Thermo-hydro-mechanical coupling analysis of a thermo-active diaphragm wall

Author:

Rui Yi1,Yin Mei2

Affiliation:

1. Centre for Smart Infrastructure and Construction, Department of Engineering, University of Cambridge, UK.

2. Schofield Centre, Department of Engineering, University of Cambridge, Trumpington Street, Cambridge, CB2 1PZ, UK.

Abstract

Thermo-active diaphragm walls that combine load bearing ability with a ground source heat pump (GSHP) are considered to be one of the new technologies in geotechnical engineering. Despite the vast range of potential applications, current thermo-active diaphragm wall designs have very limited use from a geotechnical aspect. This paper investigates the wall–soil interaction behaviour of a thermo-active diaphragm wall by conducting a thermo-hydro-mechanical finite element analysis. The GSHP operates by circulating cold coolant into the thermo-active diaphragm wall during winter. Soil contraction and small changes in the earth pressures acting on the wall are observed. The strain reversal effect makes the soil stiffness increase when the wall moves in the unexcavated side direction, and hence gives different trends for long-term wall movements compared to the linear elastic model. The GSHP operation makes the wall move in a cyclic manner, and the seasonal variation is approximately 0.5–1 mm, caused by two factors: the thermal effects on the deformation of the diaphragm wall itself and the thermally induced volume change of the soil and pore water. In addition, it is found that the change in bending moment of the wall due to the seasonal GSHP cycle is caused mainly by the thermal differential across the wall during the winter, because the seasonal changes in earth pressures acting on the diaphragm wall are very limited.

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3