Elevation gradient drives distribution of soil carbon in a semiarid grassland of British Columbia

Author:

Kramer A.1,Wallace B.M.2ORCID,Krzic M.13ORCID,Newman R.2,Bradfield G.E.4

Affiliation:

1. Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC V6T 1Z4, Canada

2. BC Ministry of Forests, Kamloops, BC V2C 2T3, Canada

3. Faculty of Forestry, University of British Columbia, Vancouver, BC V6T 1Z4, Canada

4. Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada

Abstract

A sequence of Brown, Dark Brown and Black Chernozems spanning a 600 m elevation gradient in a semiarid bunchgrass ecosystem (Lac du Bois Grassland) near Kamloops, British Columbia was first described in 1961. More soil organic carbon (SOC) at higher elevations along the sequence was attributed to increasing effective precipitation with increasing elevation. Since the 1961 study, plant community composition has shifted toward the desired climax community due to improved livestock management instituted in the 1970s; however, changes in soil carbon stocks remain unknown. The objective of this study was to quantify SOC and soil inorganic carbon (SIC) stocks using the same site selection criteria as used in 1961. SOC stocks (kg m−2 ± SD; 0–60 cm) were similar for Brown (5.73 ± 1.7) and Dark Brown Chernozems (5.87 ± 0.76) but increased sharply (10.11 ± 2.5) for the higher elevation Black Chernozems. SIC increased with depth in all three soil zones, representing 33%–50% of total C from the 30–60 cm soil depth. To evaluate changes in SOC (0–20 cm) from the 1961 measurements, three different approaches for calculating SOC stocks were used based on the inclusion or exclusion of coarse fragments. Results varied across the three soil zones from no change to a 20% increase in the Brown, an increase of 7% to a reduction of 26% in the Dark Brown, and a decrease of 12% to 35% in the Black soil zone. Information about soil coarse fragments and the distribution of SOC and SIC stocks within the soil profile is crucial for accurate comparisons across studies or resampling events.

Publisher

Canadian Science Publishing

Subject

Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3