Evaluation of a combination of phosphorylated fibers and zeolite as a potential substitute to synthetic wetting agents in peat moss products

Author:

Mouandhoime Zahahe Oulame12,Brouillette François12

Affiliation:

1. Innovation Institute in Ecomaterials, Ecoproducts and Ecoenergies (I2E3), Université du Québec à Trois-Rivières, Trois-Rivières, QC G9A 5H7, Canada

2. Innovation Institute in Ecomaterials, Ecoproducts and Ecoenergies (I2E3), Université du Québec à Trois-Rivières, Trois-Rivières, QC G9A 5H7, Canada.

Abstract

Water availability and pH are important factors to consider to determine the suitability of a material for use as a growing medium. Unfortunately, most horticultural substrates are characterized by their water repellency. This is the case with peat moss which is hydrophobic and acidic. Synthetic surfactants are required to improve its wettability. In this study, a combination of phosphorylated wood pulp fibers (FLP) and zeolite is proposed as a substitute to surfactants to increase the wettability of peat moss in the presence of lime, an additive generally used as fertilizer or pH regulator. Results show that lime reduces the water retention capacity of FLP. However, the addition of 15% zeolite to the peat moss/FLP system increases the pH and water retention of the substrate. The negative effect of the presence of 1 wt. % lime on the water retention of the peat moss/FLP mixture was corrected by zeolite addition. Optimal conditions were obtained at 10% zeolite for the two types of lime tested with favorable pH and water retention capacity values. Zeolite was shown to have a higher affinity than FLP for calcium ions preventing the detrimental interaction between FLP and calcium ions.

Publisher

Canadian Science Publishing

Subject

Soil Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3