Soil carbohydrate and aggregation as affected by carbohydrate composition of paper mill biosolids

Author:

Gagnon Bernard12,Ziadi Noura12

Affiliation:

1. Agriculture and Agri-Food Canada, Quebec Research and Development Centre, 2560 Hochelaga Boulevard, Québec, QC G1V 2J3, Canada

2. Agriculture and Agri-Food Canada, Quebec Research and Development Centre, 2560 Hochelaga Boulevard, Québec, QC G1V 2J3, Canada.

Abstract

Paper mill biosolids (PB) are recognized as a valuable source of carbon for the physical improvement of arable soils. However, little is known about the composition of carbohydrates of these materials and their breakdown in soil, which contributes to soil structural stability. The objectives of this study were to characterize the carbohydrates in PB and to determine under controlled conditions and in the field the soil carbohydrate content and water-stable aggregation. The field experiment consisted of PB applied every year (2000–2008) at 0, 30, and 60 Mg wet weight·ha−1 to annual row crops with soils collected after 3, 6, and 9 yr. The other experiment consisted of PB added at 50 Mg wet weight·ha−1 to two soils, a clay and a sandy loam, and incubated at 25 °C and 60% water-filled pore space for 16 wk. The PB differed in their content in galactose, mannose, and arabinose for total fraction and sum of carbohydrates for water-soluble fraction. In the field, repeated annual PB application increased most of soil total carbohydrates (sum and individuals) after 3 yr and the proportion of >1 mm stable aggregates. The incubation study confirmed results obtained in the field, where the PB richest in carbohydrates induced the highest increases in soil total carbohydrates in both soil types. Soil total and microbial (galactose and mannose)-derived carbohydrates were closely correlated with the percentage of large aggregates, while with water-soluble carbohydrates, they are highly correlated to the amount of microbial carbohydrates applied, thus further contributing to improve soil C quality.

Publisher

Canadian Science Publishing

Subject

Soil Science

Reference54 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3