Cattle manure loadings and legacy effects on copper and zinc availability under rainfed and irrigated conditions

Author:

Indraratne Srimathie P.1,Spengler Matthew2,Hao Xiying2

Affiliation:

1. Department of Environmental Studies and Sciences, University of Winnipeg, Winnipeg, MB R3B 2E9, Canada.

2. Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, 5403 1st Avenue South, Lethbridge, AB T1J 4B1, Canada.

Abstract

Long-term cattle manure applications build up nutrient pools and can lead to trace element enrichments in soils. The objectives of this study were to evaluate copper (Cu) and zinc (Zn) loadings in the soil during continuous annual cattle manure applications and determine the time required for soil to return to its pre-manure available Cu and Zn levels after manure is discontinued. The manure application rates were 0, 30, 60, and 90 Mg·ha−1 for rainfed and 0, 60, 120, and 180 Mg·ha−1 (wet weight) for irrigated plots. Although manure was applied for 45 yr in some plots, applications were terminated in one subset of treatments after 14 yr and in another subset after 30 yr to study legacy effects after 31 and 15 yr, respectively. Soil samples were collected in the fall of 2003, 2008, 2013, and 2018 and analyzed for available Cu and Zn. Crops were grown in all years continuously with Cu and Zn concentrations measured in both silage and grains harvested. The regression model developed using data collected suggests long legacy effects with recovery time to pre-manure levels ranging from 10 to 20 yr for Cu and 23 to 41 yr for Zn at irrigated and 10–24 for Cu and 21–32 yr for Zn under rainfed, respectively. Long-term applications of cattle manure could lead to accumulation of Cu and Zn, creating long-lasting legacy effects in soils with the increased environmental risk of leaching to groundwater.

Publisher

Canadian Science Publishing

Subject

Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3