Twenty-four years of contrasting cropping systems on a brown chernozem in Southern Alberta: crop yields, soil carbon, and subsoil salinity

Author:

Bremer E.1,Pauly D.2,McKenzie R.H.2,Ellert B.H.3,Janzen H.H.3

Affiliation:

1. Western Ag Innovations, Saskatoon, SK S7N 2G6, Canada

2. Alberta Agriculture and Forestry, Lethbridge, AB T1J 4V6, Canada

3. Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada

Abstract

Cropping systems with perennial forages and reduced fallow frequency generally increase soil organic carbon and thus subsequent soil health and crop yield. We evaluated the impact of prior cropping systems on subsequent yields and soil properties in a semiarid region by using crop yields as a bioassay of soil health following the termination of a 24-year crop rotation study in the Brown soil zone in Alberta. During 24 growing seasons from 1992 to 2015, the study included three fallow-containing rotations, two annual crop rotations that were cropped continuously, and perennial grass hay, each with two to six fertilizer treatments. During the bioassay period from 2016 through 2020, all plots in the study were uniformly cropped. Compared to unfertilized fallow wheat, soil organic C in the fall of 2015 was 54% higher after 24 years of fertilized grass and up to 14% higher following annual crops in rotations without fallow. The most notable impact of the previous cropping system on yield during the bioassay years was low yield following perennial grass in 2016 and 2018. Soil electrical conductivity measurements showed that subsoil salinity was elevated following perennial grass, demonstrating the importance of subsoil characteristics for healthy soils. Crop yields in the fifth year of the crop bioassay were 10%–20% greater due to reduced fallow frequency or increased crop diversity. The long-term impact of the cropping system on crop yield in this study depended on drought intensity due to counteracting changes in soil organic matter and subsoil salinity.

Publisher

Canadian Science Publishing

Subject

Soil Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3