Relationship of soil water retention characteristics and soil properties: a case study from the Colombian Andes

Author:

Roa García Clara12,Brown Sandra2,Krzic Maja3,Lavkulich Les2,Roa-García María Cecilia4

Affiliation:

1. Facultad de Ingeniería y Administración, Universidad Nacional de Colombia, Palmira, Colombia.

2. Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.

3. Faculty of Land and Food Systems / Faculty of Forestry, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.

4. Centro Interdisciplinario de Estudios sobre Desarrollo CIDER, Universidad de los Andes, Bogotá, Colombia.

Abstract

Differences in soil water retention (SWR) characteristics between soil types and the factors driving those differences provide important information for land management, particularly in regions such as the Colombian Andes, which have limited water-storage infrastructure and where soils provide plant-available water and other ecosystem services. The objective of this study was to explore relationships between SWR and physical, chemical, and mineralogical properties of Andisols and Inceptisols through a case study of two watersheds in the Colombian Andes. This study identified a complex relationship between total carbon (TC), short-range order (SRO) minerals, and SWR. Both soil types had high SWR, with volumetric water content at permanent wilting point between 39% and 53%. Principal component analysis showed association of SWR with TC, SRO minerals, and % clay in both soil types. The Andisols of this study were coarse textured, allophanic (rich in allophane and imogolite — up to 17% in the B horizon), and with up to 15% TC in the A horizon. In contrast, the Inceptisols were fine textured (>30% clay) and higher in ferrihydrite than the Andisols. The formation of organo-metallic complexes was observed in A horizons; however, TC was lower under pasture than forest in both soil types. The addition of organic matter to soils with SRO minerals, such as the soils of this study, may foster the formation of organo-metallic complexes, stabilize soil C, and enhance SWR. Consequently, both study sites may benefit from management practices that increase soil organic matter.

Publisher

Canadian Science Publishing

Subject

Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3