Spatial variation of nitrous oxide fluxes during growing and non-growing seasons at a location subjected to seasonally frozen soils

Author:

Machado Pedro Vitor Ferrari1,Farrell Richard E.2,Wagner-Riddle Claudia1

Affiliation:

1. School of Environmental Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G2W1, Canada.

2. Department of Soil Science, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada.

Abstract

Nitrous oxide (N2O) emissions from soils have been widely studied in the literature — mostly with the chamber method — due to the importance of this gas to climate change. Emissions of N2O derive from biological reactions and are controlled by soil parameters, which are by nature heterogeneous (i.e., “hot spots” for N2O emissions) — a source of uncertainty in chamber-based studies. Spatial variation in N2O fluxes has been assessed in the literature, but the information is still needed for contrasting soil management practices (e.g., tillage) and for specific bioclimatic situations [e.g., non-growing seasons (NGS) under cold weather]. Here, we subsampled daily N2O data to assess within-plot and between-block spatial variation from an agronomic experiment under conventional tillage (CT) and no-tillage (NT), identifying if patterns differ between growing seasons (GS) and NGS datasets. Within-plot spatial variation in N2O fluxes was a small source of uncertainties, but half of the comparisons in GS datasets presented a slope different from 1 for the regression of N2O averages from two vs. one chamber per plot — a source of uncertainty mitigated when within-plot duplication occurred during N2O “hot moments”. Between-block spatial variation in N2O emissions was much larger than within-plot errors — an effect more accentuated for NGS and CT than GS and NT datasets. Decreasing the number of sampled blocks resulted in averages that did not represent the N2O daily average of the whole field, but exceptions occurred. The methodology proposed here may be used in other locations, after appropriate verification, for improved planning and maximization of the resources associated with N2O measurements.

Publisher

Canadian Science Publishing

Subject

Soil Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3