Analysis of mulched drip irrigation with brackish water in cotton fields using the HYDRUS-3D numerical model

Author:

Yuyang Shan1,Lijun Su1ORCID,Quanjiu Wang1,Yan Sun1,Weiyi Mu1,Jihong Zhang1,Kai Wei1

Affiliation:

1. State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, China

Abstract

This study combined continuous monitoring in the field using computer modeling to understand soil water movement and salt transport so as to design a suitable irrigation system for cotton using mulched drip irrigation with brackish water. A reasonable irrigation regime was determined and verified using thresholds of water and salinity stress in the various stages of cotton growth. In addition, some key factors, such as emitter discharge rate, emitter spacing, and initial water content, were screened for simulation, and irrigation uniformity and desalination rate were selected as the indicators for evaluation. The results showed that: ( i) The HYDRUS-3D model was a useful tool for designing suitable irrigation regimes, and the determined suitable irrigation quota was 5160 m3 hm−2 under mulched drip irrigation with brackish water during the growth period of cotton in 2019. ( ii) The irrigation uniformity and leaching rate decreased with an increase in the emitter discharge, and the linear relationship between uniformity, leaching rate, and emitter discharge could be identified. ( iii) The irrigation uniformity and leaching rate decreased with an increase in emitter spacing, and power functions might be used to calculate uniformity, leaching rate, and emitter spacing. ( iv) The irrigation uniformity and leaching rate increased with an increase in initial water content, and the relationship between the two indexes and initial water content was defined by a linear function and a power function, respectively. These results provided a valuable reference for the rational use of drip irrigation with brackish water.

Publisher

Canadian Science Publishing

Subject

Soil Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3