Gamma radiation for the estimation of mineral soil water content in a boreal forest

Author:

Gélinas Mathieu1,Jutras Sylvain2

Affiliation:

1. Laval University, 4440, Wood and Forest Sciences, Quebec City, Quebec, Canada;

2. Universite Laval, 4440, Département des sciences du bois et de la forêt, Quebec, Quebec, Canada, ;

Abstract

Continuous monitoring of water quantities in different soil horizons is necessary to understand the behavior of infiltrated water in the soil. Under certain conditions, using measurements of natural ground gamma radiation can help us estimate soil water content measurements over a 100 m2 surface within a 15 cm depth. A CS725 sensor can provide up to four daily estimates of soil water content by detecting the natural emission of gamma radiation. However, in boreal forest environments, gamma radiation mitigated by the water in the thick humus layers (LFH horizon) can bias in the underlying mineral soil water content measurements. The objective of this research was to evaluate the accuracy of methods that incorporate variables describing the surface humus layer into calculations of the underlying mineral soil water content, by measuring the soil's natural gamma emission with the CS725. Using raw gamma radiation values obtained by CS725 sensors deployed over various boreal soils, we tested two functions. The first one included variables describing the humus layer and the other excluded these variables (manufacturer’s method). The function that included the descriptive humus layer variables showed superior results compared to the function without. The results of this study suggest that the CS725 sensor can adequately estimate mineral soil water content within ± 10% absolute of the reference water content when examined with the following humus variables: humus layer thickness, factioned composition, bulk density, and linear gamma radiation attenuation.

Publisher

Canadian Science Publishing

Subject

Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3