Comparing direct and indirect approaches to predicting soil texture class

Author:

Saurette Daniel D.12ORCID

Affiliation:

1. Ontario Ministry of Agriculture, Food and Rural Affairs, 1 Stone Road West, 3rd Floor SE, Guelph, ON N1G 4Y2, Canada

2. School of Environmental Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada

Abstract

Soil texture, or the relative proportions of sand, silt, and clay, is a key soil attribute that influences many important physical, chemical, and biological properties of soils. Digital soil mapping is increasingly used to predict soil texture; however, few comparisons have been made between direct prediction of a texture class, and the indirect prediction of texture class by first predicting sand, silt, and clay content, and subsequently converting the predictions to a texture class. We predicted soil texture class for the 5–15 and 30–60 cm depth intervals of the Ottawa soil survey project using direct and indirect approaches which yielded a similar overall accuracy (28–36%) and kappa (0.19–0.27). The predicted soil maps had a similar spatial distribution of soil texture classes. We then used the Euclidean distance between the texture classes to adjust the model performance metrics, revealing the indirect approach provided the better soil texture class prediction. When comparing the predictions, the 5–15 and 30–60 cm maps were in perfect agreement for 53% and 42% of the study area, respectively, and in both cases texture class predictions were within one texture class for over 87% of the map area. For many studies, including legacy soil surveys, texture class information is available, and particle size distribution data are generally lacking. This study confirms that direct prediction of soil texture class performs almost equally with indirect prediction.

Publisher

Canadian Science Publishing

Subject

Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3